МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 18» ГОРОДА КАЛУГИ

РАБОЧАЯ ПРОГРАММА элективного курса по физике «Решение задач по физике повышенной сложности»

10-11 класс

Пояснительная записка

Программа элективного курса «Решение задач по физике повышенной сложности» составлена на основе:

- «Программы элективных курсов. Физика. 9-11 классы. Профильное обучение», составитель: В.А. Коровин;,.
- авторской программы «Методы решения физических задач»: В.А. Орлов, Ю.А. Сауров. учебников:
- Мякишев Г.Я., Буховцев Б.Б., В.М. Чаругин. Физика-11 (базовый и углубленный уровни).
 М.: Просвещение, 2020.
 сборников тестовых и текстовых заданий для контроля знаний и умений:
- А.Е.Марон, Е.А.Марон «Контрольные тесты по физике» для 10-11 классов; «Просвещение» 2004г. –107 стр.
- А.П.Рымкевич «Сборник задач по физике» для 10-11классов; «Дрофа» 2014г. –192 стр.

<u>Для реализации программы</u> использовано учебное пособие: В.А. Орлов, Ю.А. Сауров «Практика решения физических задач. 10-11 классы».

Программа рассчитана на 67 часов за два года (по 34 часа в 10 классе и 33 часа 11 классе).

Физическая задача — это ситуация (совокупность определенных факторов), требующая от учащихся мыслительных и практических действий на основе законов и методов физики, направленных на овладение знаниями и на развитие мышления.

На современном этапе школьная физическая задача, это:

- образование мышления и деятельности;
- средство, инструмент воспроизводства мышления и деятельности в условиях обучения (усвоение нормы);
 - объект изучения и исследования.

Отсутствие умения решать задачи является одной из причин снижения успеха обучения физике, поэтому <u>цель</u> элективного курса — обучение учащихся методам решения физических задач на новом, творческом уровне посредством анализа условия по физическим явлениям, комбинирования нескольких физических подходов к решению на основе разбиения на подзадачи.

Цели курса:

- 1. развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний:
- 2. совершенствование полученных в основном курсе знаний и умений;
- 3. формирование представителей о постановке, классификаций, приемах и методах решения физических задач;
- 4. применять знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания.

Задачи курса:

- 1. углубление и систематизация знаний учащихся;
- 2. усвоение учащимися общих алгоритмов решения задач;
- 3. овладение основными методами решения задач.

Планируемые предметные результаты освоения программы:

В результате освоения программы «Решение задач повышенной сложности по физике» к концу 10 класса обучающийся научится:

- понимать и объяснять смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие;
- понимать и объяснять смысл физических величин: скорость, ускорение, масса, сила,

импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

- понимать и объяснять смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики;
- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; свойства электрического поля;
- отличать гипотезы от научных теорий;
- делать выводы на основе экспериментальных данных;
- приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов;
- проговаривать вслух решение и анализировать полученный ответ;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: обеспечения безопасности жизнедеятельности в процессе использования бытовых электроприборов, оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и защиты окружающей среды

Получит возможность научиться:

- анализировать такие физические явления, как движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел;
- последовательно выполнять и проговаривать этапы решения задачи среднего уровня сложности;
- выполнять и оформлять эксперимент по заданному шаблону,
- решать комбинированные задачи;
- составлять задачи на основе собранных данных;
- воспринимать различные источники информации, готовить сообщения, доклады, исследовательские работы,
- соблюдать правила техники безопасности при работе с оборудованием,
- составлять сообщение по заданному алгоритму;
- формулировать цель предстоящей деятельности; оценивать результат;
- работать в паре, в группе, прислушиваться к мнению одноклассников;
- владеть методами самоконтроля и самооценки.

К концу 11 класса обучающийся научится

- понимать и объяснять смысл понятий: электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- понимать и объяснять смысл физических величин: элементарный электрический заряд, сила тока, напряжение, сопротивление, емкость, индуктивность, энергия и импульс фотона;
- понимать и объяснять смысл физических законов электромагнитной индукции, фотоэффекта;
- описывать и объяснять физические явления и свойства тел: электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- приводить примеры, показывающие, что физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления; приводить примеры практического использования физических знаний: электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- анализировать полученный ответ;
- классифицировать предложенную задачу;
- последовательно выполнять и проговаривать этапы решения задачи различного уровня сложности;
- соблюдать правила техники безопасности при работе с оборудованием,
- выполнять и оформлять эксперимент по заданной задаче,

Получит возможность научиться:

- анализировать такие физические явления, как электромагнитная индукция, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- классифицировать предложенную задачу;
- выполнять и оформлять эксперимент по заданному шаблону,
- владеть различными методами решения задач: аналитическим, графическим, экспериментальным и т.д.;
- выбирать рациональный способ решения задачи;
- решать комбинированные задачи;
- составлять задачи на основе собранных данных;
- воспринимать различные источники информации, готовить сообщения, доклады, исследовательские работы,
- составлять сообщение в соответствие с заданными критериями.
- формулировать цель предстоящей деятельности; оценивать результат;
- работать в паре, в группе, прислушиваться к мнению одноклассников;
- владеть методами самоконтроля и самооценки.

Личностные и метапредметные результаты освоения программы

Личностными результатами изучения программы являются:

- положительное отношение к российской физической науке;
- умение управлять своей познавательной деятельностью;
- готовность к осознанному выбору профессии.

Метапредметными результатами изучения программы являются:

- использование умений различных видов познавательной деятельности (наблюдение, эксперимент, работа с книгой, решение проблем, знаково-символическое оперирование информацией и др.);
- применение основных методов познания (системно-информационный анализ, моделирование, экспериментирование и др.) для изучения различных сторон окружающей действительности;
- владение интеллектуальными операциями формулирование гипотез, анализ, синтез, оценка, сравнение, обобщение, систематизация, классификация, выявление причинно-следственных связей, поиск аналогии в межпредметном и метапредметном контекстах;
- умение генерировать идеи и определять средства, необходимые для их реализации (проявление инновационной активности).

Содержание программы

10 класс (34 часа)

Введение (1 ч)

Что такое физическая задача. Состав физической задачи. Физическая теория и решение задач. Значение задач в обучении и жизни.

Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.

Составление физических задач. Основные требования к составлению задач. Способы и техника составления задач. Примеры задач всех видов.

Механика (17 часов)

Общие требования при решении физических задач. Этапы решения физической задачи. Работа с текстом задачи. Анализ физического явления; формулировка идеи • решения (план решения). Выполнение плана решения задачи. Числовой расчет. Использование вычислительной техники для расчетов. Анализ решения и его значение. Оформление решения.

Типичные недостатки при решении и оформлении решения физической задачи. Изучение примеров решения задач. Различные приемы и способы решения: алгоритмы, аналогии, геометрические приемы. Метод размерностей, графические решения и т. д.

Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил.

Задачи на определение характеристик равновесия физических систем.

Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета.

Подбор, составление и решение по интересам различных сюжетных задач: занимательных, экспериментальных с бытовым содержанием, с техническим и краеведческим содержанием, военно-техническим содержанием.

Классификация задач по механике: решение задач средствами кинематики, динамики, с помощью законов, сохранения.

Задачи на закон сохранения импульса и реактивное движение. Задачи на определение работы и мощности. Задачи на закон сохранения и превращения механической энергии.

Решение задач несколькими способами. Составление задач на заданные объекты или явления. Взаимопроверка решаемых задач. Знакомство с примерами решения задач по механике республиканских и международных олимпиад.

Конструкторские задачи и задачи на проекты: модель акселерометра, модель маятника Фуко, модель кронштейна, модель пушки с противооткатным устройством, проекты самодвижущихся тележек, проекты устройств для наблюдения невесомости, модель автоколебательной системы.

Молекулярная физика. Термодинамика (9 часов)

Качественные задачи на основные положения и основное уравнение молекулярнокинетической теории (МКТ). Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах.

Задачи на свойства паров: использование уравнения Менделеева — Клапейрона, характеристика критического состояния. Задачи на описание явлений поверхностного слоя; работа сил поверхностного натяжения, капиллярные явления, избыточное давление в мыльных пузырях. Задачи на определение характеристик влажности воздуха.

Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Качественные и количественные задачи. Устный диалог при решении качественных задач. Графические и экспериментальные задачи, задачи бытового содержания.

Комбинированные задачи на первый закон термодинамики. Задачи на тепловые двигатели.

Конструкторские задачи и задачи на проекты: модель газового термометра; модель предохранительного клапана на определенное давление; проекты использования газовых процессов для подачи сигналов; модель тепловой машины; проекты практического определения радиуса тонких капилляров.

Электричество и магнетизм (7 часов)

Характеристика решения задач раздела: общее и разное, примеры и приемы решения.

Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Решение задач на описание систем конденсаторов.

Задачи разных видов на описание магнитного поля тока и его действия: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца.

Решение качественных экспериментальных задач с использованием электрометра, магнитного зонда и другого оборудования.

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов «а описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений. Ознакомление с правилами Кирхгофа при решении задач. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов при изменении сопротивления тех или иных участков цепи, на определение сопротивлений участков цепи и т. д. Решение задач на расчет участка цепи, имеющей ЭДС.

Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках: характеристика носителей, характеристика конкретных явлений и др. Качественные, экспериментальные, занимательные задачи, задачи с техническим содержанием, комбинированные задачи.

Конструкторские задачи на проекты: установка для нагревания жидкости на заданную температуру, модель автоматического устройства с электромагнитным реле, проекты и модели освещения, выпрямитель и усилитель на полупроводниках, модели измерительных приборов, модели «черного ящика».

Электричество и магнетизм (11 часов)

Задачи разных видов на описание магнитного поля тока и его действия: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца.

Решение качественных экспериментальных задач с использованием электрометра, магнитного зонда и другого оборудования.

Оптика (5 часов)

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи по геометрической оптике: зеркала, оптические схемы. Задачи на определение оптической схемы, содержащейся в «черном ящике»: конструирование, приемы и примеры решения. Групповое и коллективное решение экспериментальных задач с использованием осциллографа, звукового генератора, трансформатора, комплекта приборов для изучения свойств электромагнитных волн, электроизмерительных приборов.

Атомная и ядерная физика (4 часа)

Задачи на различные виды превращений при бомбардировке элементарными частицами. Задачи на период полураспада. Классификация задач по СТО и примеры их решения.

Механика (7 часов)

Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил.

Задачи на определение характеристик равновесия физических систем.

Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета.

Подбор, составление и решение по интересам различных сюжетных задач: занимательных, экспериментальных с бытовым содержанием, с техническим и краеведческим содержанием, военно-техническим содержанием.

Молекулярная физика. Термодинамика (5 часов)

Основные положения молекулярно-кинетической теории и их опытное обоснование. Масса и размеры молекул. Постоянная Авогадро.

Идеальный газ. Давление газа. Понятие вакуума. Основное уравнение молекулярнокинетической теории идеального газа. Температура как мера средней кинетической энергии хаотического движения молекул.

Уравнение Клапейрона-Менделеева. Изопроцессы и их графики.

Изменение внутренней энергии газа в процессе теплообмена и совершаемой работы. Первое начало термодинамики. Работа газа при изобарном изменении его объема. Физический смысл молярной газовой постоянной. Адиабатный процесс. Применение первого начала термодинамики к изопроцессам.

Второе начало термодинамики. Принцип действия тепловой машины. Понятие о цикле Карно. КПД теплового двигателя. Тепловые двигатели.

Тематическое планирование

№ п/п	Содержание программы	Количество часов		
		10 класс	11 класс	всего
1.	Введение	1	-	1
2.	Механика	17	7	24
3.	Молекулярная физика. Термодинамика	9	5	14
4.	Электричество и магнетизм	7	12	19
5.	Оптика	-	5	5
6.	Атомная и ядерная физика	-	4	4
	Итого:	34	33	67

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 603332450510203670830559428146817986133868575803

Владелец Жандарова Лариса Борисовна

Действителен С 25.03.2022 по 25.03.2023