МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 18» ГОРОДА КАЛУГИ Рабочая программа по математике 10-11 классы (углубленный уровень) 1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Программа по учебному предмету «Математика (углубленный уровень)» разработана в соответствии с требованиями к результатам освоения ООП СОО МБОУ «Средняя общеобразовательная школа №18» г. Калуги, предусмотренными ФГОС СОО, и на основе Примерной основной образовательной программы среднего общего образования. Для реализации Рабочей программы используется учебно-методический комплект, включающий учебники: "Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа.10—11 классы. Базовый и углублённый уровни." Автор: Никольский С. М., Потапов М. К., Решетников Н. Н. и др., Л.С. Атанасян, «Геометрия, 10-11» Цели: Изучение математики в старшей школе на углубленном следующих целей: уровне направлено на достижение формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов; овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне; развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности; воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса. О с н о в н а я з а д а ч а обучения математике в школьном образовании заключается в обеспечении прочного и сознательного овладения обучающимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продоления образования. Наряду с решением основной задачи, углубленное изучение математики предусматривает формирование у обучающихся устойчивого интереса к предмету, выявление и развитие их математических способностей, ориентацию на профессии, существенным образом связанные с математикой, подготовку к обучению в вузе. Содержание учебного предмета направлено на; •формирование представлений об идеях и методах математики; •о математике как универсальном языке науки, средстве моделирования явлений и процессов; •овладение устным и письменным математическим языком,математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне; • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности; • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, • понимание значимости математики для общественного прогресса. Систематический курс «Математика», включающий алгебру, начала математического анализа и геометрию, представлен содержательными линиями: • числа и координаты • рациональные выражения • уравнения и неравенства с одной переменной • функции и последовательности • тригонометрические функции • предел и непрерывность • производная и её приложения • интеграл и дифференциальные уравнения • многочлены от нескольких переменных • система уравнений и неравенств • комплексные числа и операции над ними • параллельность прямых и плоскостей • перпендикулярность прямых и плоскостей • многогранники • векторы в пространстве • метод координат в пространстве • цилиндр, конус, сфера и шар • объёмы тел Для изучения математики углубленного уровня на этапе среднего общего образования отводится 469 ч из расчета алгебры 170 часов в 10 классе, 165 часов в 11 классе и геометрии 68 часов в 10 классе, 66 часов в 11 классе. При этом изучение курса построено в форме последовательности тематических блоков с чередованием материала по алгебре, анализу, дискретной математике, геометрии. Реализация обучения математике осуществляется через личностно-ориентированную технологию, крупноблочное погружение в учебную информацию, где учебная деятельность, в основном, строится следующим образом: введение в тему, изложение нового материала, отработка теоретического материала, практикум по решению задач, итоговый контроль. Основным видом деятельности учащихся на уроке является самостоятельная работа. Контроль знаний проводится в форме самостоятельных работ, тестов, контрольных работ. 2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ – сформированность мировоззрения, соответствующего современному уровню развития науки; – критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; – готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения; – навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебноисследовательской, проектной и других видах деятельности; – готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; – эстетическое отношение к миру, включая эстетику быта, научного и технического творчества; – осознанный выбор будущей профессии и возможность реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общественных проблем. МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ 1. Регулятивные УУД: -самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута; -оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали; -ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях; -оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели; -выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты; -организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели; сопоставлять полученный результат деятельности с поставленной заранее целью. 2. Познавательные УУД: -искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи; -критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках; -использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках; -находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития; -выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия; -выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения; -менять и удерживать разные позиции в познавательной деятельности. 3. Коммуникативные УУД: – осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий; – при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.); – координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия; – развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств; – распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений. ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ На углубленном уровне: Выпускник научится в 10–11-м классах: для успешного продолжения образования по специальностям, связанным с прикладным использованием математики. Выпускник получит возможность научиться в 10–11-м классах: для обеспечения возможности успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области математики и смежных наук. Углубленный уровень «Системно-теоретические результаты» Раздел Выпускник научится Выпускник получит возможность научиться Для успешного продолжения образования Для обеспечения возможности успешного продолжения Цели по специальностям, связанным с прикладным использованием образования по специальностям, связанным с освоения математики осуществлением научной и исследовательской предмета деятельности в области математики и смежных наук Требования к результатам Элементы Свободно оперировать понятиями: конечное множество, Достижение результатов раздела II; теории элемент множества, подмножество, пересечение, оперировать понятием определения, основными видами определений, основными видами теорем; множеств объединение и разность множеств, числовые множества на и координатной прямой, отрезок, интервал, полуинтервал, понимать суть косвенного доказательства; математич промежуток с выколотой точкой, графическое оперировать понятиями счетного и несчетного множества; еской представление множеств на координатной плоскости; логики задавать множества перечислением и характеристическим применять метод математической индукции для проведения рассуждений и доказательств и при решении свойством; задач. оперировать понятиями: утверждение, отрицание В повседневной жизни и при изучении других предметов: утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при контрпример; решении задач других учебных предметов проверять принадлежность элемента множеству; находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости; проводить доказательные рассуждения для обоснования истинности утверждений. В повседневной жизни и при изучении других предметов: использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений; проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов Числа и Свободно оперировать понятиями: натуральное число, Достижение результатов раздела II; выражения множество натуральных чисел, целое число, множество свободно оперировать числовыми множествами при целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел; понимать и объяснять разницу между позиционной и непозиционной системами записи чисел; переводить числа из одной системы записи (системы счисления) в другую; доказывать и использовать признаки делимости суммы и произведения при выполнении вычислений и решении задач; выполнять округление рациональных и иррациональных чисел с заданной точностью; сравнивать действительные числа разными способами; упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2; находить НОД и НОК разными способами и использовать их при решении задач; выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней; выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений. В повседневной жизни и при изучении других предметов: выполнять и объяснять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений; решении задач; понимать причины и основные идеи расширения числовых множеств; владеть основными понятиями теории делимости при решении стандартных задач иметь базовые представления о множестве комплексных чисел; свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений; владеть формулой бинома Ньютона; применять при решении задач теорему о линейном представлении НОД; применять при решении задач Китайскую теорему об остатках; применять при решении задач Малую теорему Ферма; уметь выполнять запись числа в позиционной системе счисления; применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера; применять при решении задач цепные дроби; применять при решении задач многочлены с действительными и целыми коэффициентами; владеть понятиями приводимый и неприводимый многочлен и применять их при решении задач; применять при решении задач Основную теорему алгебры; применять при решении задач простейшие функции комплексной переменной как геометрические преобразования Уравнения и неравенств а записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения; составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений; решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3-й и 4-й степеней, дробно-рациональные и иррациональные; овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач; применять теорему Безу к решению уравнений; применять теорему Виета для решения некоторых уравнений степени выше второй; понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать; владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор; использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения; решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами; владеть разными методами доказательства неравенств; решать уравнения в целых числах; изображать множества на плоскости, задаваемые Достижение результатов раздела II; свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем; свободно решать системы линейных уравнений; решать основные типы уравнений и неравенств с параметрами; применять при решении задач неравенства Коши — Буняковского, Бернулли; иметь представление о неравенствах между средними степенными уравнениями, неравенствами и их системами; свободно использовать тождественные преобразования при решении уравнений и систем уравнений Функции В повседневной жизни и при изучении других предметов: составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов; выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов; составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов; составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты; использовать программные средства при решении отдельных классов уравнений и неравенств Владеть понятиями: зависимость величин, функция, аргумент Достижение результатов раздела II; и значение функции, область определения и множество владеть понятием асимптоты и уметь его применять при значений функции, график зависимости, график функции, решении задач; нули функции, промежутки знакопостоянства, возрастание применять методы решения простейших на числовом промежутке, убывание на числовом дифференциальных уравнений первого и второго промежутке, наибольшее и наименьшее значение функции порядков на числовом промежутке, периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач; владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач; владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач; владеть понятием логарифмическая функция; строить ее Элементы математи ческого анализа график и уметь применять свойства логарифмической функции при решении задач; владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач; владеть понятием обратная функция; применять это понятие при решении задач; применять при решении задач свойства функций: четность, периодичность, ограниченность; применять при решении задач преобразования графиков функций; владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия; применять при решении задач свойства и признаки арифметической и геометрической прогрессий. В повседневной жизни и при изучении других учебных предметов: определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.); интерпретировать свойства в контексте конкретной практической ситуации;. определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.) Владеть понятием бесконечно убывающая геометрическая Достижение результатов раздела II; прогрессия и уметь применять его при решении задач; свободно владеть стандартным аппаратом применять для решения задач теорию пределов; математического анализа для вычисления производных владеть понятиями бесконечно большие и бесконечно малые функции одной переменной; числовые последовательности и уметь сравнивать свободно применять аппарат математического анализа бесконечно большие и бесконечно малые для исследования функций и построения графиков, в том последовательности; числе исследования на выпуклость; владеть понятиями: производная функции в точке, производная функции; вычислять производные элементарных функций и их комбинаций; исследовать функции на монотонность и экстремумы; строить графики и применять к решению задач, в том числе с параметром; владеть понятием касательная к графику функции и уметь применять его при решении задач; владеть понятиями первообразная функция, определенный интеграл; применять теорему Ньютона–Лейбница и ее следствия для решения задач. В повседневной жизни и при изучении других учебных предметов: решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов; интерпретировать полученные результаты Статисти Оперировать основными описательными характеристиками числового набора, понятием генеральная совокупность и ка и теория выборкой из нее; вероятнос тей, логика оперировать понятиями: частота и вероятность события, и сумма и произведение вероятностей, вычислять комбинато вероятности событий на основе подсчета числа исходов; рика владеть основными понятиями комбинаторики и уметь их применять при решении задач; иметь представление об основах теории вероятностей; иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин; иметь представление о математическом ожидании и дисперсии случайных величин; иметь представление о совместных распределениях случайных величин; оперировать понятием первообразной функции для решения задач; овладеть основными сведениями об интеграле Ньютона–Лейбница и его простейших применениях; оперировать в стандартных ситуациях производными высших порядков; уметь применять при решении задач свойства непрерывных функций; уметь применять при решении задач теоремы Вейерштрасса; уметь выполнять приближенные вычисления (методы решения уравнений, вычисления определенного интеграла); уметь применять приложение производной и определенного интеграла к решению задач естествознания; владеть понятиями вторая производная, выпуклость графика функции и уметь исследовать функцию на выпуклость Достижение результатов раздела II; иметь представление о центральной предельной теореме; иметь представление о выборочном коэффициенте корреляции и линейной регрессии; иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и ее уровне значимости; иметь представление о связи эмпирических и теоретических распределений; иметь представление о кодировании, двоичной записи, двоичном дереве; владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач; иметь представление о деревьях и уметь применять при решении задач; Текстовые задачи Геометрия понимать суть закона больших чисел и выборочного владеть понятием связность и уметь применять компоненты связности при решении задач; метода измерения вероятностей; иметь представление о нормальном распределении и уметь осуществлять пути по ребрам, обходы ребер и вершин графа; примерах нормально распределенных случайных величин; иметь представление об эйлеровом и гамильтоновом пути, иметь представление о корреляции случайных величин. иметь представление о трудности задачи нахождения гамильтонова пути; В повседневной жизни и при изучении других предметов: вычислять или оценивать вероятности событий в реальной владеть понятиями конечные и счетные множества и уметь их применять при решении задач; жизни; уметь применять метод математической индукции; выбирать методы подходящего представления и обработки уметь применять принцип Дирихле при решении задач данных Достижение результатов раздела II Решать разные задачи повышенной трудности; анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы; строить модель решения задачи, проводить доказательные рассуждения при решении задачи; решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата; анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту; переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы. В повседневной жизни и при изучении других предметов: решать практические задачи и задачи из других предметов Владеть геометрическими понятиями при решении задач и проведении математических рассуждений; самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по Иметь представление об аксиоматическом методе; владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач; уметь применять для решения задач свойства плоских и двугранных углов, трехгранного угла, теоремы косинусов и синусов для трехгранного угла; владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач; различным основаниям; исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах; решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач; уметь формулировать и доказывать геометрические утверждения; владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр; иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач; уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов; иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними; применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач; уметь применять параллельное проектирование для изображения фигур; уметь применять перпендикулярности прямой и плоскости при решении задач; владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач; владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач; владеть понятием угол между прямой и плоскостью и иметь представление о двойственности правильных многогранников; владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций; иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника; иметь представление о конических сечениях; иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач; применять при решении задач формулу расстояния от точки до плоскости; владеть разными способами задания прямой уравнениями и уметь применять при решении задач; применять при решении задач и доказательстве теорем векторный метод и метод координат; иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач; применять теоремы об отношениях объемов при решении задач; применять интеграл для вычисления объемов и поверхностей тел вращения, вычисления площади сферического пояса и объема шарового слоя; иметь представление о движениях в пространстве: параллельном переносе, симметрии относительно плоскости, центральной симметрии, повороте относительно прямой, винтовой симметрии, уметь применять их при решении задач; иметь представление о площади ортогональной проекции; иметь представление о трехгранном и многогранном угле и применять свойства плоских углов многогранного угла при решении задач; уметь применять его при решении задач; иметь представления о преобразовании подобия, владеть понятиями двугранный угол, угол между гомотетии и уметь применять их при решении задач; плоскостями, перпендикулярные плоскости и уметь уметь решать задачи на плоскости методами применять их при решении задач; стереометрии; владеть понятиями призма, параллелепипед и применять уметь применять формулы объемов при решении задач свойства параллелепипеда при решении задач; владеть понятием прямоугольный параллелепипед и применять его при решении задач; владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач; иметь представление о теореме Эйлера, правильных многогранниках; владеть понятием площади поверхностей многогранников и уметь применять его при решении задач; владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач; владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач; иметь представления о вписанных и описанных сферах и уметь применять их при решении задач; владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач; иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач; иметь представление о площади сферы и уметь применять его при решении задач; уметь решать задачи на комбинации многогранников и тел вращения; иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур. В повседневной жизни и при изучении других предметов: Векторы и координат ыв пространс тве составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат Владеть понятиями векторы и их координаты; уметь выполнять операции над векторами; использовать скалярное произведение векторов при решении задач; применять уравнение плоскости, формулу расстояния между точками, уравнение сферы при решении задач; применять векторы и метод координат в пространстве при решении задач Достижение результатов раздела II; находить объем параллелепипеда и тетраэдра, заданных координатами своих вершин; задавать прямую в пространстве; находить расстояние от точки до плоскости в системе координат; находить расстояние между скрещивающимися прямыми, заданными в системе координат История Иметь представление о вкладе выдающихся математиков в Достижение результатов раздела II математик развитие науки; и понимать роль математики в развитии России Методы Использовать основные методы доказательства, проводить Достижение результатов раздела II; применять математические знания к исследованию математик доказательство и выполнять опровержение; окружающего мира (моделирование физических и применять основные методы решения математических процессов, задачи экономики) задач; на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства; применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач; пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов 3.СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА Углубленный уровень Алгебра и начала анализа Повторение. Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробно-рациональных выражений. Решение задач с использованием градусной меры угла. Модуль числа и его свойства. Решение задач на движение и совместную работу, смеси и сплавы с помощью линейных, квадратных и дробно-рациональных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков. Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной y x . Графическое решение уравнений и неравенств. пропорциональности и функции Использование операций над множествами и высказываниями. Использование неравенств и систем неравенств с одной переменной, числовых промежутков, их объединений и пересечений. Применение при решении задач свойств арифметической и геометрической прогрессии, суммирования бесконечной сходящейся геометрической прогрессии. Множества (числовые, геометрических фигур). Характеристическое свойство, элемент множества, пустое, конечное, бесконечное множество. Способы задания множеств Подмножество. Отношения принадлежности, включения, равенства. Операции над множествами. Круги Эйлера. Конечные и бесконечные, счетные и несчетные множества. Истинные и ложные высказывания, операции над высказываниями. Алгебра высказываний. Связь высказываний с множествами. Кванторы существования и всеобщности. Законы логики. Основные логические правила. Решение логических задач с использованием кругов Эйлера, основных логических правил. Умозаключения. Обоснования и доказательство в математике. Теоремы. Виды математических утверждений. Виды доказательств. Математическая индукция. Утверждения: обратное данному, противоположное, обратное противоположному данному. Признак и свойство, необходимые и достаточные условия. Основная теорема арифметики. Остатки и сравнения. Алгоритм Евклида. Китайская теорема об остатках. Малая теорема Ферма. q-ичные системы счисления. Функция Эйлера, число и сумма делителей натурального числа. Радианная мера угла, тригонометрическая окружность. Тригонометрические функции чисел и углов. Формулы приведения, сложения тригонометрических функций, формулы двойного и половинного аргумента. Преобразование суммы, разности в произведение тригонометрических функций, и наоборот. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции и наименьший период. Четные и нечетные функции. Функции «дробная часть числа» y x и «целая часть числа» y x . Тригонометрические функции числового аргумента y cos x , y sin x , y tg x , y ctg x . Свойства и графики тригонометрических функций. Обратные тригонометрические функции, их главные значения, свойства и графики. Тригонометрические простейших уравнения. Однородные тригонометрических неравенств. тригонометрические Простейшие системы уравнения. Решение тригонометрических уравнений. Степень с действительным показателем, свойства степени. Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график. Число e и функция y ex . Логарифм, свойства логарифма. Десятичный и натуральный логарифм. Преобразование логарифмических выражений. Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график. Степенная функция и ее свойства и график. Иррациональные уравнения. Первичные представления о множестве комплексных чисел. Действия с комплексными числами. Комплексно сопряженные числа. Модуль и аргумент числа. Тригонометрическая форма комплексного числа. Решение уравнений в комплексных числах. Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг, умножение на число, отражение относительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля. Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических и иррациональных неравенств. Взаимно обратные функции. Графики взаимно обратных функций. Уравнения, системы уравнений с параметром. Формула Бинома Ньютона. Решение уравнений степени выше 2 специальных видов. Теорема Виета, теорема Безу. Приводимые и неприводимые многочлены. Основная теорема алгебры. Симметрические многочлены. Целочисленные и целозначные многочлены. Диофантовы уравнения. Цепные дроби. Теорема Ферма о сумме квадратов. Суммы и ряды, методы суммирования и признаки сходимости. Теоремы о приближении действительных чисел рациональными. Множества на координатной плоскости. Неравенство Коши–Буняковского, неравенство Йенсена, неравенства о средних. Понятие предела функции в точке. Понятие предела функции в бесконечности. Асимптоты графика функции. Сравнение бесконечно малых и бесконечно больших. Непрерывность функции. Свойства непрерывных функций. Теорема Вейерштрасса. Дифференцируемость функции. Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Применение производной в физике. Производные элементарных функций. Правила дифференцирования. Вторая производная, ее геометрический и физический смысл. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач. Нахождение экстремумов функций нескольких переменных. Первообразная. Неопределенный интеграл. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла.. Методы решения функциональных уравнений и неравенств. Геометрия Повторение. Решение задач с использованием свойств фигур на плоскости. Решение задач на доказательство и построение контрпримеров. Применение простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисления длин и площадей. Решение задач с помощью векторов и координат. Наглядная стереометрия. Призма, параллелепипед, пирамида, тетраэдр. Основные понятия геометрии в пространстве. Аксиомы стереометрии и следствия из них. Понятие об аксиоматическом методе. Теорема Менелая для тетраэдра. Построение сечений многогранников методом следов. Центральное проектирование. Построение сечений многогранников методом проекций. Скрещивающиеся прямые в пространстве. Угол между ними. Методы нахождения расстояний между скрещивающимися прямыми. Теоремы о параллельности прямых и плоскостей в пространстве. Параллельное проектирование и изображение фигур. Геометрические места точек в пространстве. Перпендикулярность прямой и плоскости. Ортогональное проектирование. Наклонные и проекции. Теорема о трех перпендикулярах. Виды тетраэдров. Ортоцентрический тетраэдр, каркасный тетраэдр, равногранный тетраэдр. Прямоугольный тетраэдр. Медианы и бимедианы тетраэдра. Достраивание тетраэдра до параллелепипеда. Расстояния между фигурами в пространстве. Общий перпендикуляр двух скрещивающихся прямых. Углы в пространстве. Перпендикулярные плоскости. Площадь ортогональной проекции. Перпендикулярное сечение призмы. Трехгранный и многогранный угол. Свойства плоских углов многогранного угла. Свойства плоских и двугранных углов трехгранного угла. Теоремы косинусов и синусов для трехгранного угла. Виды многогранников. Развертки многогранника. Кратчайшие пути на поверхности многогранника. Теорема Эйлера. Правильные многогранники. Двойственность правильных многогранников. Призма. Параллелепипед. Свойства параллелепипеда. Прямоугольный параллелепипед. Наклонные призмы. Пирамида. Виды пирамид. Элементы правильной пирамиды. Пирамиды с равнонаклоненными ребрами и гранями, их основные свойства. Площади поверхностей многогранников. Тела вращения: цилиндр, конус, шар и сфера. Сечения цилиндра, конуса и шара. Шаровой сегмент, шаровой слой, шаровой сектор (конус). Усеченная пирамида и усеченный конус. Элементы сферической геометрии. Конические сечения. Касательные прямые и плоскости. Вписанные и описанные сферы. Касающиеся сферы. Комбинации тел вращения. Векторы и координаты. Сумма векторов, умножение вектора на число. Угол между векторами. Скалярное произведение. Уравнение плоскости. Формула расстояния между точками. Уравнение сферы. Формула расстояния от точки до плоскости. Способы задания прямой уравнениями. Решение задач и доказательство теорем с помощью векторов и методом координат. Элементы геометрии масс. Понятие объема. Объемы многогранников. Объемы тел вращения. Аксиомы объема. Вывод формул объемов прямоугольного параллелепипеда, призмы и пирамиды. Формулы для нахождения объема тетраэдра. Теоремы об отношениях объемов. Приложения интеграла к вычислению объемов и поверхностей тел вращения. Площадь сферического пояса. Объем шарового слоя. Применение объемов при решении задач. Площадь сферы. Развертка цилиндра и конуса. Площадь поверхности цилиндра и конуса. Комбинации многогранников и тел вращения. Подобие в пространстве. Отношение объемов и площадей поверхностей подобных фигур. Движения в пространстве: параллельный перенос, симметрия относительно плоскости, центральная симметрия, поворот относительно прямой. Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов. Вероятность и статистика, логика, теория графов и комбинаторика Повторение. Использование таблиц и диаграмм для представления данных. Решение задач на применение описательных характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии и стандартного отклонения. Вычисление частот и вероятностей событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Использование комбинаторики. Вычисление вероятностей независимых событий. Использование формулы сложения вероятностей, диаграмм Эйлера, дерева вероятностей, формулы Бернулли. Вероятностное пространство. Аксиомы теории вероятностей. Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Формула Байеса. Дискретные случайные величины и распределения. Совместные распределения. Распределение суммы и произведения независимых случайных величин. Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин. Бинарная случайная величина, распределение Бернулли. Геометрическое распределение. Биномиальное распределение и его свойства. Гипергеометрическое распределение и его свойства. Непрерывные случайные величины. Плотность вероятности. Функция распределения. Равномерное распределение. Показательное распределение, его параметры. Распределение Пуассона и его применение. Нормальное распределение. Функция Лапласа. Параметры нормального распределения. Примеры случайных величин, подчиненных нормальному закону (погрешность измерений, рост человека). Центральная предельная теорема. Неравенство Чебышева. Теорема Чебышева и теорема Бернулли. Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе. Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции. Линейная регрессия. Статистическая гипотеза. Статистика критерия и ее уровень значимости. Проверка простейших гипотез. Эмпирические распределения и их связь с теоретическими распределениями. Ранговая корреляция. Построение соответствий. Инъективные и сюръективные соответствия. Биекции. Дискретная непрерывность. Принцип Дирихле. Кодирование. Двоичная запись. Основные понятия теории графов. Деревья. Двоичное дерево. Связность. Компоненты связности. Пути на графе. Эйлеровы и Гамильтоновы пути. 4.ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ № п/п Тема 10 класс Повторение курса алгебры основной школы. 1. Действительные числа 2. Некоторые сведения из планиметрии 3. Рациональные уравнения и неравенства Введение (Предмет стереометрии. Основные понятия и аксиомы стереометрии. Первые следствия из теорем) 5. Параллельность прямых и плоскостей 6. Корень степени n 4. Количество часов 5 13 12 26 3 16 14 7. Степень положительного числа 8. Перпендикулярность прямых и плоскостей 14 9. Логарифмы Простейшие показательные и логарифмические уравнения и 10. неравенства 11. Многогранники 12. Синус и косинус угла 8 11 13. Тангенс и котангенс угла 14. Формулы сложения 10 13 17 13 14 15. Тригонометрические функции числового аргумента 16. Тригонометрические уравнения и неравенства 9 16 17. Повторение курса геометрии 18. Вероятность события. 6 19. Частота. Условная вероятность. 20. Повторение 3 Итого № п/п Тема 11 класс Функции и их графики Предел функции и непрерывность Обратные функции Векторы в пространстве Метод координат в пространстве Производная Применение производной Цилиндр, конус, шар 9 10 11 12 13 14 15 16 Первообразная и интеграл Объемы тел Равносильность уравнений и неравенств Уравнения-следствия Равносильность уравнений и неравенств системам Равносильность уравнений на множествах Равносильность неравенств на множествах Метод промежутков для уравнений и неравенств Использование свойств функций при решении уравнений и неравенств Системы уравнений с несколькими неизвестными Уравнения, неравенства и системы с параметрами. Комплексные числа. Повторение Итого 18 19 20 21 9 238 1 2 3 4 5 6 7 8 17 6 Количество часов 11 6 6 6 15 12 18 16 15 17 4 9 13 11 9 5 6 8 7 10 27 231